Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 22(1): 385, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129880

RESUMO

The primary reason for the failure of malaria vector control across endemic regions is the widespread insecticide resistance observed in Anopheles vectors. The most dominant African vectors of malaria parasites are Anopheles gambiae and Anopheles funestus mosquitoes. These species often exhibit divergent behaviours and adaptive changes underscoring the importance of deploying active and effective measures in their control. Unlike An. gambiae, An. funestus mosquitoes are poorly studied in Benin Republic. However, recent reports indicated that An. funestus can adapt and colonize various ecological niches owing to its resistance against insecticides and adaptation to changing breeding habitats. Unfortunately, scientific investigations on the contribution of An. funestus to malaria transmission, their susceptibility to insecticide and resistance mechanism developed are currently insufficient for the design of better control strategies. In an attempt to gather valuable information on An. funestus, the present review examines the progress made on this malaria vector species in Benin Republic and highlights future research perspectives on insecticide resistance profiles and related mechanisms, as well as new potential control strategies against An. funestus. Literature analysis revealed that An. funestus is distributed all over the country, although present in low density compared to other dominant malaria vectors. Interestingly, An. funestus is being found in abundance during the dry seasons, suggesting an adaptation to desiccation. Among the An. funestus group, only An. funestus sensu stricto (s.s.) and Anopheles leesoni were found in the country with An. funestus s.s. being the most abundant species. Furthermore, An. funestus s.s. is the only one species in the group contributing to malaria transmission and have adapted biting times that allow them to bite at dawn. In addition, across the country, An. funestus were found resistant to pyrethroid insecticides used for bed nets impregnation and also resistant to bendiocarb which is currently being introduced in indoor residual spraying formulation in malaria endemic regions. All these findings highlight the challenges faced in controlling this malaria vector. Therefore, advancing the knowledge of vectorial competence of An. funestus, understanding the dynamics of insecticide resistance in this malaria vector, and exploring alternative vector control measures, are critical for sustainable malaria control efforts in Benin Republic.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/epidemiologia , Benin , Mosquitos Vetores , Controle de Mosquitos
2.
Malar J ; 19(1): 456, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334345

RESUMO

BACKGROUND: Understanding the molecular basis of insecticide resistance in mosquito, such as Anopheles funestus, is an important step in developing strategies to mitigate the resistance problem. This study aims to assess the role of the GSTe2 gene in DDT resistance and determine the genetic diversity of this gene in An. funestus. METHODS: Gene expression analysis was performed using microarrays and PCR while the potential mutation associated with resistance was determined using sequencing. RESULTS: Low expression level of GSTe2 gene was recorded in Burkina-Faso samples with a fold change of 3.3 while high expression (FC 35.6) was recorded in southern Benin in Pahou (FC 35.6) and Kpome (FC 13.3). The sequencing of GSTe2 gene in six localities showed that L119F-GSTe2 mutation is almost getting fixed in highly DDT-resistant Benin (Pahou, Kpome, Doukonta) and Nigeria (Akaka Remo) mosquitoes with a low mutation rate observed in Tanongou (Benin) and Burkina-Faso mosquitoes. CONCLUSION: This study shows the key role of the GSTe2 gene in DDT resistant An. funestus in Benin. Polymorphism analysis of this gene across Benin revealed possible barriers to gene flow, which could impact the design and implementation of resistance management strategies in the country.


Assuntos
Anopheles/genética , DDT/farmacologia , Glutationa Transferase/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Benin , Feminino , Geografia , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo
3.
Parasit Vectors ; 13(1): 423, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811561

RESUMO

BACKGROUND: Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS: Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS: Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS: The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Bioensaio , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/farmacologia , Dieldrin/farmacologia , Vetores de Doenças , Esterases/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Nigéria , Análise de Sequência com Séries de Oligonucleotídeos , Permetrina/farmacologia , Tripsina/genética , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Wellcome Open Res ; 2: 109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387806

RESUMO

Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole,and two mineral water namely FIFA and Possotômè) and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation. Results:In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L) and nitrate (118.8mg/L). Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3%) and Possotômè(79.5%) water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

5.
Malar J ; 15(1): 565, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876039

RESUMO

BACKGROUND: Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-Remo, a farm settlement village in southwest Nigeria. RESULTS: Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequencies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) (allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respectively) as this mutation is not yet fixed in the population. CONCLUSION: The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, necessary to pay more attention to this major malaria vector for effective malaria control in Nigeria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium/isolamento & purificação , Animais , Bioensaio , Dieldrin/farmacologia , Feminino , Frequência do Gene , Genótipo , Proteínas de Insetos/genética , Masculino , Mutação , Nigéria , Permetrina/farmacologia , Fenilcarbamatos/farmacologia , Reação em Cadeia da Polimerase , População Rural , Análise de Sobrevida
6.
Wellcome Open Res ; 1: 28, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28191507

RESUMO

Background. Malaria remains an important public health issue in Benin, with Anopheles gambiae s.l. and Anopheles funestus s.s being the predominant vectors. This study was designed to generate information on An. funestus distribution, molecular speciation, Plasmodium infection rate and insecticide susceptibility status across Benin. Methods. Mosquito samples were collected from December 2014 to January 2016 in 46 localities in Benin. These samples were mapped and An. funestus collected were speciated to the molecular level. Plasmodium infection rate was determined using a Taqman assay and susceptibility to insecticides was assessed using the WHO guidelines. The genotyping of the L119F- Gste2 mutation was also carried out.  Results.  An. funestus was found in 8 out of the 46 localities surveyed with a high presence in Tanongou (wet Sudanese ecological zone), Kpome, Doukonta and Pahou (sub-equatorial ecological zone). Molecular identifications revealed that only An. funestuss.s was present in southern Benin, whereas in Tanongou (northern Benin) An. funestus s.s. and An. leesoni were found in sympatry at proportions of 77.7% and 22.3% respectively. Plasmodium infection rate of An. funestus was higher in southern Benin at a range of 13 to 18% compared to 5.6% recorded in Tanongou. High DDT (8±0.5%) and permethrin (11±0.5%) resistance were observed in Doukonta, Kpome and Pahou, contrasting with relatively low resistance profiles: mortality-DDT=90±3.18% and mortality-permethrin=100% in Tanongou. Genotyping analysis revealed  high frequency  of the resistant 119F allele in the South (Kpome and Doukonta) compared to the North (Tanongou).  Discussion and Conclusion. The high presence of   An. funestus in the South compared to the North  could be due to favorable environmental and climatic conditions found in both regions. A significant Plasmodium infection rate was recorded across the country. A high resistance profile was recorded in the southern Benin; this raises the need for further investigations on resistance selection factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...